Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 7: Quadratic Equations

Definition 1. Quadratic Equation: A quadratic equation in the variable x is an equation of the form

$$ax^2 + bx + c = 0$$

where a, b, and, c are real numbers and $a \neq 0$. Note that this form is called the standard form.

Example 1. $5x^2 - 2x + 3 = 0$ is a quadratic equation with a = 5, b = -2, and, c = 3.

Definition 2. Zero-Product Property: Let A and B be two algebraic expressions. Then AB = 0 if and only if A = 0 or B = 0. For example, if (x - 1)(x + 2) = 0, then x - 1 = 0 or x + 2 = 0. Hence, x = 1 or x = -2.

Definition 3. Solving Quadratic Equation by Factoring:

Step 1. Write the given equation in the standard form.

Step 2. Factor the nonzero side of the equation from Step 1.

Step 3. Set each factor obtained from Step 2 equal to 0.

Step 4. Solve the resulting equations in Step 3.

Step 5. Check the solutions obtained in Step 4 in the original equation.

Example 2. Solve by factoring: $2x^2 + 5x = 3$ Solution:

$2x^2 + 5x = 3$	(original equation)
$2x^2 + 5x - 3 = 0$	$(standard \ equation)$
(2x - 1)(x + 3) = 0	(factoring nonzero side),

then either 2x - 1 = 0 or x + 3 = 0. So, the solutions are $x = \frac{1}{2}$ or x = -3. Finally, we need to check that these are valid solutions by plugging them in the original equation.

Example 3. Solve by factoring: $x^2 + 16 = 8x$ Solution:

$x^2 + 16 = 8x$	(original equation)
$x^2 + 16 - 8x = 0$	
$x^2 - 8x + 16 = 0$	$(standard \ equation)$
(x-4)(x-4) = 0	(factoring nonzero side)

then either x - 4 = 0 or x - 4 = 0. So, we get x = 4. Finally, plugging 4 in $x^2 + 16 = 8x$ yields 32 = 32 which means that 4 is the only solution of $x^2 + 16 = 8x$.

Definition 4. Square-Root Property: Suppose u is any algebraic expression and $d \ge 0$. If $u^2 = d$, then $u = \pm \sqrt{d}$. For example, if $(x + 3)^2 = 5$, then $x + 3 = \pm \sqrt{5}$. Then $x = -3 \pm \sqrt{5}$ and the solution set is $\{-3 - \sqrt{5}, -3 + \sqrt{5}\}$.

Definition 5. Quadratic Formula: The solutions of the quadratic equation in the standard form $ax^2 + bx + c = 0$ with $a \neq 0$ are given by the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Example 4. Solve $3x^2 = 5x + 2$ by using the quadratic formula. **Solution:** The standard form of $3x^2 = 5x + 2$ is $3x^2 - 5x - 2 = 0$. Then the coefficients are: a = 3, b = -5, and c = -2. And we have

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{5 \pm \sqrt{25 + 24}}{6}$$

$$x = \frac{5 \pm \sqrt{49}}{6}$$

$$x = \frac{5 \pm 7}{6}$$

Then the solution set is $\{\frac{5-7}{6} = \frac{-1}{3}, \frac{5+7}{6} = 2\}.$